Evolving automation systems drive advances in manufacturing

MANUFACTURING environments are rapidly evolving due to global competition and changing customer requirements. To maintain competitiveness, intelligent software control programmes are required to operate at faster speeds; information integration becomes imperative in achieving timely and accurate data retrieval to support critical business decisions.

The notion of intelligent software has existed for a long time, but a paradigm shift is occurring in how critical and complex automation systems are designed, configured, and controlled. To achieve ‘artificial intelligence or self healing’ would be the ultimate goal; a system where the intelligence of machines is such that traits like reasoning, knowledge, planning, learning, communication, and perception provide machines with the ability to move and manipulate objects to improve commercial outcomes. While intelligent software still has a long way to go to achieve this, increasing embedded computing in distributed intelligent devices provides improved system operation. 

Intelligent software devices that can evolve to overcome challenges and self-heal to prevent downtime are being actively developed. This technology has proven to be widely adaptable to a range of complex systems and industrial applications.

Integrated safety and motion control

Manufacturing plants are increasingly realising the importance of integrating safety controls to help minimise worker injuries and increase overall cost savings. The safe control of motion has many benefits including efficient maintenance of an application without disrupting power supply to machinery, safe speed control and safe control of potentially hazardous movement. Efficient translation of data to produce an action, or exact motion to help maximise safety, continues to be the backbone of intelligent software advancement.

Control of intelligent agents that can interact with actuators and sensors provides the ability to address motion control in large, complex manufacturing systems. Relying on a single, central controller has significant limitations because damage to that controller or to the communication infrastructure used can result in a loss of controllability. Safety hazards are inevitable when motion control is compromised. A distributed, survivable and adaptable architecture can be achieved by distributing the intelligence of the system among multiple controllers. Embedding standalone or multiple intelligent agents inside the controllers, results in an advanced level of motion control.

Energy efficient solutions

Energy management is a complex but important factor in optimising production processes in manufacturing plants. Globally, manufacturers are putting systems in place to reduce water, air, gas, electricity and steam consumption–resources widely required by processing plants. Recent advances in intelligent motor control, incorporating variable speed drives, intelligent software and networked motor condition monitoring devices allows for a measureable impact on energy use and operational efficiency. Intelligent software can offer significant energy savings by improving process diagnosis, stability and consistency in operations and by improving the control response to operating changes.

Manufacturers can use energy consumption data to identify variables in energy costs across all equipment on the plant floor collectively and also with individual machines. Energy management can be applied to machine design practices by improving efficiency of equipment components such as motors and drives or by attaching monitoring devices to assist with data collection. By collecting accurate energy consumption data, manufacturers can modify the OEE calculation to include energy efficiency, allowing them to achieve higher profitability while reducing greenhouse emissions.

Intelligent software leads manufacturing into the future

Manufacturing environments are rapidly changing as a result of increased global competition and changing customer needs. Advances in intelligent software technology continue to provide manufacturing enterprises with the capabilities and flexibility to deal with these changes. By coordinating and integrating production activities within a manufacturing enterprise, intelligent agents provide increased productivity and profitability.

Intelligent agents are increasingly able to incorporate logic and collaborative reasoning parameters to detect faulty components, process problems and inefficiencies in a manufacturing plant. By eliminating the need for centralised control, autonomous intelligent agents display the capabilities for predictive reconfiguration of production processes, thereby reducing downtime and increasing productivity.

With the manufacturing environment constantly evolving–the ultimate goal is to develop adaptive, self-healing systems that can react to their environment and modify their behaviour accordingly to maximise production efficiencies.

[Paul McRoberts is Rockwell Automation industry solutions manager – initiatives, South Pacific region.]